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Abstract. We consider a mean-field dynamical urn model, defined by rules which give the rate at which a
ball is drawn from an urn and put in another one, chosen amongst an assembly. At equilibrium, this model
possesses a fluid and a condensed phase, separated by a critical line. We present an analytical study of
the nonequilibrium properties of the fluctuating number of balls in a given urn, considering successively
the temporal evolution of its distribution, of its two-time correlation and response functions, and of the
associated fluctuation-dissipation ratio, both along the critical line and in the condensed phase. For well
separated times the fluctuation-dissipation ratio admits non-trivial limit values, both at criticality and in
the condensed phase, which are universal quantities depending continuously on temperature.

PACS. 02.50.Ey Stochastic processes – 05.40.-a Fluctuation phenomena, random processes, noise, and
Brownian motion – 61.43.Fs Glasses

1 Background: on dynamical urn models

Dynamical urn models are simplified models of physical
reality, which have always played an important role in the
elucidation of conceptual problems of statistical mechanics
and probability theory.

The ancestor and prototype of this class of mod-
els is the Ehrenfest urn model [1]. It was devised by
P. and T. Ehrenfest, in their attempt to critically review
Boltzmann’s H-theorem. Consider N balls, labeled from
1 to N , which are distributed in two urns (or boxes). At
each time step a ball is chosen at random (i.e., an inte-
ger between 1 and N is chosen at random), and moved
from the box in which it is, to the other box. Let N1 (re-
spectively, N2) be the numbers of balls in box number 1
(respectively, number 2) (N1 + N2 = N). If the process
is repeated indefinitely, for any initial condition the sys-
tem will relax to equilibrium, characterized by a binomial
distribution of balls in, say, box number 1:

fk,eq = P(N1 = k) =
(
N

k

)
1

2N
· (1.1)

This result is both intuitively translucent, and easy to
derive (see below). The partition function of the system is
equal to (for 2 boxes and N balls)

Z(2, N) =
2N

N !
· (1.2)
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There are 2N possibilities of distributing the balls amongst
the 2 boxes, however all N ! labelings of the balls are equiv-
alent.

Finding the distribution of balls after n steps, fk(n) =
P(N1(n) = k), requires more effort. Kohlrausch and
Schrödinger [2] found the master equation for fk(n), which
they interpreted as the probability distribution of the posi-
tion at time n of a random walker (played here by N1(n)).
The full solution of this master equation was given later
on by Kac et al. [3–6].

The Ehrenfest model is at the origin of a whole class
of dynamical urn models, which we name the Ehrenfest
class. They generalize the original Ehrenfest model in two
ways, which we detail successively.

The first generalization consists in considering M
boxes instead of two. Then, at equilibrium, the joint dis-
tribution of the occupation numbers N1, N2, . . . , NM ,
with

M∑
i=1

Ni = N,

is the multinomial distribution

P(N1 = k1, . . . , NM = kM ) =
(

N

k1 . . . kM

)
1

MN
,

as a simple reasoning shows. The marginal distribution
of N1 is obtained by summation upon the other variables,
and reads

fk,eq = P(N1 = k) =
(
N

k

)
1

MN
,
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which is a simple generalization of (1.1). In the thermo-
dynamic limit N → ∞, M → ∞, with fixed density
ρ = N/M , this yields a Poisson law:

fk,eq = e−ρ
ρk

k!
·

The partition function of the system is equal to (for M
boxes and N balls)

Z(M,N) =
MN

N !
, (1.3)

as a simple generalization of the reasoning leading to (1.2)
shows.

The dynamics of the Ehrenfest model and of its gen-
eralization to M boxes takes place at infinite tempera-
ture because there is no constraint on the move of the
drawn ball. The second direction of generalization con-
sists in defining these models at finite temperature, by
introducing energy. We assume that the energy is a sum
of contributions of independent boxes:

E(N1, . . . , NM) =
M∑
i=1

E(Ni),

and choose a rule obeying detailed balance for the move
of the drawn ball. For instance, for the Metropolis rule,
the move is allowed with probability min(1, exp(−β∆E)).
Heat-bath dynamics is another possible choice (see below).

The fundamental ingredients for the definition of the
models belonging to the Ehrenfest class are therefore

(i) the statistics: a ball is chosen at random, and put in
a box chosen at random,

(ii) the choice of the energy of a box E(Ni), and of a
dynamical rule (Metropolis or heat-bath),

(iii) the geometry: for instance, boxes may be ordered on
a line, or on the contrary be all connected. For short,
we designate the latter geometry as the mean-field
case.

The backgammon model [7] is a representative of the
Ehrenfest class, corresponding to the choice (where δ is
Kronecker symbol)

E(Ni) = −δ(Ni, 0). (1.4)

This model has been extensively studied, mainly in its
mean-field formulation [8–10].

The dynamical (and equilibrium) properties of the
Ehrenfest class depend crucially on the choice of statistics
described in (i), which we will briefly refer to as the ball-
box statistics. However, other choices are possible, which
define new classes of dynamical urn models. The class
which we will refer to for short as the Monkey class, be-
cause it corresponds to the image of a monkey playing at
exchanging balls between boxes, is defined by:

(i) the statistics: a box is chosen at random, from which
any ball is drawn, and put in another box, chosen at
random (box-box statistics),

(ii) the choice of energy and dynamical rule (as above),
(iii) the geometry (as above).

A first example of a model belonging to this class cor-
responds to taking definition (1.4) for the energy [9]. This
model, referred to as model B in [9], possesses non-trivial
dynamical properties [9,10].

A second example, inspired from quantum gravity, cor-
responds to taking [11]

E(Ni) = ln(Ni + 1). (1.5)

It presents interesting properties both at equilibrium [11]
and in nonequilibrium situations [12]. In contrast with the
backgammon model, or with model B, it possesses a phase
transition between a fluid phase and a condensed phase at
finite temperature [11]. We will refer to this model as the
zeta urn model, for reasons which will appear clear in the
sequel. The present work is entirely devoted to the study
of the nonequilibrium behavior of the zeta urn model in
the mean-field geometry.

Before specializing to this model, let us first present, in
parallel, some formalism which applies to the two classes
of models defined above, in order to underline the funda-
mental role played by the choice of statistics for both the
equilibrium and nonequilibrium properties of the models.
Note that the equilibrium properties of the dynamical urn
models defined above are independent of the geometry, be-
cause boxes are independent.

For the Ehrenfest class, the partition function reads

Z(M,N) =
∑
N1

· · ·
∑
NM

pN1

N1!
· · · pNM

NM !
δ

(∑
i

Ni, N

)
,

(1.6)

where
pNi = e−βE(Ni)

is the unnormalized Boltzmann weight attached to box
number i. For the Monkey class we have

Z(M,N) =
∑
N1

· · ·
∑
NM

pN1 · · · pNM δ

(∑
i

Ni, N

)
.

(1.7)

Using the integral representation 2iπδ(m,n) =∮
dz zm−n−1, we obtain

Z(M,N) =
∮

dz
2iπzN+1

[P (z)]M , (1.8)

where

P (z) =
∞∑
k=0

pk
k!
zk (Ehrenfest), (1.9)

=
∞∑
k=0

pk z
k (Monkey). (1.10)

The equilibrium properties of the models are therefore
entirely encoded in the temperature-dependent generat-
ing series P (z). The presence or absence of the factorial
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term k! has direct implication on the analytic structure of
the series, and by consequence on the possible existence
of a phase transition at finite temperature.

The equilibrium probability distribution of the occu-
pation number N1 reads, for the Ehrenfest class,

fk,eq = P(N1 = k) = 〈δ (N1, k)〉

=
1

Z(M,N)

∑
N1

· · ·
∑
NM

δ (N1, k)
pN1

N1!
. . .

pNM
NM !

× δ

(∑
i

Ni, N

)

=
pk
k!
Z(M − 1, N − k)

Z(M,N)
· (1.11)

For the Monkey class one obtains

fk,eq = pk
Z(M − 1, N − k)

Z(M,N)
· (1.12)

At infinite temperature, equation (1.8), together
with (1.9), and (1.10), respectively lead to (1.3) and
to

Z(M,N) =
(M +N − 1)!
(M − 1)!N !

· (1.13)

In the thermodynamic limit at fixed density ρ, the free
energy per box is defined as

βF = − lim
M→∞

1
M

lnZ(M,N), N ≈Mρ.

At infinite temperature, equations (1.3, 1.13) yield

lim
β→0

βF = ρ ln ρ− ρ (Ehrenfest),

= ρ lnρ− (ρ+ 1) ln(ρ+ 1) (Monkey).

At finite temperature, the free energy can be obtained
by evaluating the contour integral in (1.8) by the saddle-
point method. The saddle-point value zs of z is a function
of temperature and density through the equation

zsP
′(zs)

P (zs)
= ρ, (1.14)

and the free energy per box reads

βF = ρ ln zs − lnP (zs). (1.15)

Similarly, we obtain the following expressions for the equi-
librium occupation probabilities in the thermodynamic
limit

fk,eq =
pk
k!

zks
P (zs)

(Ehrenfest), (1.16)

= pk
zks

P (zs)
(Monkey). (1.17)

This formalism will be illustrated below on the zeta urn
model, studied in this work.

For both classes of models, the temporal evolution of
the occupation probability

fk(t) = P(N1(t) = k)

is given by the master equation

dfk(t)
dt

=
∞∑
`=0

(πk+1,` + π`,k−1 − πk,` − π`,k) , (1.18)

where πk,` denotes the contribution of a move from the
departure box, containing k balls, to the arrival box, con-
taining ` balls. Restricting our study to the mean-field
case, we have (for k, ` ≥ 0)

πk,` = kfkf`Wk,`(1− δk,0) (Ehrenfest),
= fkf`Wk,`(1− δk,0) (Monkey), (1.19)

where the term 1 − δk,0 accounts for the fact that the
departure box cannot be empty, and where the accep-
tance rate Wk,` depends on the dynamics chosen. With
the Metropolis rule we have

Wk,` = min
(

1,
pk−1p`+1

pkp`

)
,

while the heat-bath rule leads to [12]

Wk,` =
p`+1

p`

( ∞∑
`=0

f`
p`+1

p`

)−1

, (1.20)

which only depends on the label ` of the arrival box.
In all cases, equation (1.18) can be seen as the master

equation of a random walk for N1, i.e., over the positive
integers k = 0, 1, . . . ,

dfk(t)
dt

= µk+1 fk+1 + λk−1 fk−1

− (µk + λk) fk (k ≥ 1), (1.21)
df0(t)

dt
= µ1 f1 − λ0f0, (1.22)

generalizing the result of Kohlrausch and Schrödinger for
the Ehrenfest model. In these equations,

λk =
∞∑
`=0

π`,k
fk

, µk =
∞∑
`=0

πk,`
fk

are, respectively, the hopping rate to the right, corre-
sponding to N1 = k → N1 = k + 1, and to the left, corre-
sponding to N1 = k→ N1 = k− 1. The equation for f0 is
special because one cannot select an empty box as a de-
parture box, nor can N1 be negative, hence λ−1 = µ0 = 0.
In other words a partially absorbing barrier is present at
site k = 0. The random walk is locally biased, to the right
or to the left, according to whether its velocity λk − µk
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is positive or negative, respectively. It is easy to verify
that (1.21) and (1.22) preserve the sum rules∑

k

fk(t) = 1, (1.23)∑
k

k fk(t) = 〈N1(t)〉 = ρ, (1.24)

expressing respectively the conservation of probability and
of the number of particles.

The equilibrium occupation probabilities (1.16, 1.17)
are recovered as the unique stationary state (dfk/dt = 0)
of the master equations (1.21, 1.22). In contrast, except
at infinite temperature, where Wk,` = 1, so that the rates
λk and µk simplify, the master equations cannot be solved
explicitly. The difficulty comes from the fact that the rates
λk and µk are functions of the fk, hence the master equa-
tions are non-linear. However, as will be illustrated by the
present work, the long-time behavior of these equations is
amenable to analytic computations.

To summarize, for the two classes of dynamical urn
models described above, finding the properties of their
equilibrium states is in general easy, but attaining dynam-
ical properties is much more difficult to achieve. However
if one restricts the study to the fluctuating number of balls
in a given box, denoted by N1(t) all throughout this pa-
per, it is, in some cases, possible to predict the long-time
behavior of its probability distribution, fk(t), and also
of its two-time correlation and response functions. This
has been done in previous studies for the backgammon
model [8–10].

In the present work we focus our interest on the mean-
field dynamical urn model defined by the choice of en-
ergy (1.5), and box-box statistics –the zeta urn model.
We pursue the investigation of its nonequilibrium prop-
erties, initiated in [12]. The next section is devoted to a
more complete presentation of the model and to an outline
of this paper.

2 The zeta urn model

At equilibrium, the zeta urn model is defined by its par-
tition function (1.7), where the Boltzmann weight

pNi = e−βE(Ni) = (Ni + 1)−β (2.1)

corresponds to the choice of energy (1.5) [11]. The equilib-
rium phase diagram of the model [11] easily follows from
the analysis of the previous section (see (1.8–1.17)).

At low enough temperature (β > 2), there is a finite
critical density:

ρc =
P ′(1)
P (1)

=
ζ(β − 1)− ζ(β)

ζ(β)
,

where ζ denotes Riemann’s zeta function.
In the fluid phase (ρ < ρc), the equilibrium distribu-

tion (1.17) decays exponentially, since zs < 1.

At the critical density (ρ = ρc), we have zs = 1, hence

fk,eq =
pk
P (1)

=
(k + 1)−β

ζ(β)
, (2.2)

which is known as the zeta distribution. In the regular part
of the critical line (β > 3), the mean squared population
is finite, and equal to

〈
N2
i

〉
=
∞∑
k=0

k2 fk,eq = µc =
ζ(β − 2)− 2ζ(β − 1) + ζ(β)

ζ(β)
,

while it is infinite in the strong-fluctuation case
(2 < β < 3). Throughout the following, we shall restrict
the study to the regular part of the critical line.

In the condensed phase (ρ > ρc), a macroscopic con-
densate of particles appears. Indeed, equation (2.2) still
applies to all the boxes but one, in which an extensive
number of particles, of order N −Mρc = M(ρ − ρc), is
condensed.

The dynamical definition of the model was given in the
previous section. For heat-bath dynamics, equation (1.18),
together with (1.19) and (1.20), leads to [12]

dfk(t)
dt

= fk+1(t) + σ(t)rk−1fk−1(t)

− (1 + σ(t)rk) fk(t) (k ≥ 1),
df0(t)

dt
= f1(t)− σ(t)r0f0(t), (2.3)

with

rk =
pk+1

pk
=
fk+1,eq

fk,eq
=
(
k + 1
k + 2

)β
and

σ(t) =
1− f0(t)
∞∑
k=0

rkfk(t)

·

We assume that at time t = 0 the system is quenched
from its infinite-temperature equilibrium state to a finite
temperature T = 1/β. Hence, by (1.14) and (1.17), the
initial occupation probabilities read

fk(0) =
ρk

(1 + ρ)k+1
· (2.4)

In the fluid phase (ρ < ρc), the equilibrium distri-
bution fk,eq (1.17) is a stationary solution of (2.3), cor-
responding to σeq = zs. The convergence of fk(t) to-
wards fk,eq is characterized by a finite relaxation time,
depending on β and ρ.

The long-time behavior of the distribution fk(t), both
at criticality (ρ = ρc) and in the condensed phase (ρ > ρc),
is the subject of the next section. In Section 4 we es-
tablish the dynamical equations obeyed by the two-time
correlation and response functions of the population of
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a given box. It is indeed well-known that nonequilib-
rium properties are more fully revealed by two-time ob-
servables [13,14]. Section 5 is devoted to the analysis of
the equilibrium properties of these functions at critical-
ity. Section 6 is devoted to the analysis of their nonequi-
librium properties at criticality, including the violation of
the fluctuation-dissipation theorem. In Section 7 we briefly
investigate the nonequilibrium properties of the model in
the condensed phase.

3 Long-time behavior of occupation
probabilities

3.1 At criticality (ρ = ρc)

We investigate how, starting from the disordered initial
condition (2.4), the occupation probabilities fk(t) con-
verge toward their critical equilibrium values fk,eq, given
by (2.2), which are the stationary solutions of equa-
tions (2.3) corresponding to σeq = 1. In analogy with the
analysis done in [12], we anticipate that σ(t) converges to
this value as a power law:

σ(t) ≈ 1 +At−ω,

and consider two regimes:

Regime I: k fixed and t� 1
This is the “short-distance” regime, considering k as

the position of a fictitious random walker, as in Section 1.
It is therefore analogous to the Porod regime for phase-
ordering systems [15,16].

Setting

fk(t) ≈ fk,eq

(
1 + vk t

−ω) , (3.1)

equation (2.3) yields

vk = v0 +Ak, (3.2)

where v0 and A are determined below.

Regime II: k and t simultaneously large (scaling regime)
In this regime, we look for a similarity solution to (2.3)

of the form

fk(t) ≈ fk,eq F (u), u = k t−1/2. (3.3)

The structure of the master equations (2.3) indeed dic-
tates that the scaling variable is the combination kt−1/2.
Starting from a random initial condition, for a large but fi-
nite time t, and for k much smaller than an ordering size of
order t1/2, the system looks critical, i.e., the distribution
fk(t) has essentially converged toward the equilibrium dis-
tribution fk,eq. This implies F (0) = 1. To the contrary, for
k � t1/2, the system still looks disordered, i.e., the fk(t)
fall off very fast. Hence F (∞) = 0. It will indeed be shown
below that fk(t) ∼ exp(−k2/(4t)), as the scaling function
falls of very fast for u� 1: F (u) ∼ exp(−u2/4). Note the
close analogy between the present situation and critical

coarsening for ferromagnetic spin systems [15,17], where
the scaling variable is |r| t−1/z, and where the role of fk(t)
is played by the equal-time correlation function C(|r| , t).

In order to determine the exponent ω, we use the sum
rules (1.23) and (1.24), which yield respectively

t−ω(v0 +Aρc) = t−(β−1)/2I1,

I1 =
1

ζ(β)

∫ ∞
0

u−β (1− F (u)) du, (3.4)

t−ω(v0ρc +Aµc) = t−(β−2)/2I2,

I2 =
1

ζ(β)

∫ ∞
0

u1−β (1− F (u)) du. (3.5)

These equations are compatible only if the right-hand side
of equation (3.4) is subleading. In the case of a regular
critical point (β > 3), we thus obtain

ω =
β − 2

2
>

1
2

and

A =
I2

µc − ρ2
c

, v0 = − ρc I2
µc − ρ2

c

·

Inserting the form (3.3) into (2.3), and using the fact
that ω > 1/2, leads to the differential equation

DF (u) = 0, (3.6)

where D is the linear differential operator

D = − d2

du2
+
(
−u

2
+
β

u

)
d

du
· (3.7)

The solution of (3.6) is

F (u) =
2−β

Γ
(
β+1

2

) ∫ ∞
u

yβ e−y
2/4 dy. (3.8)

We present in Appendix A an alternative way of solv-
ing equation (3.6), using the Mellin transformation. In
particular (A.2) yields the explicit expression

I2 =
M1−F (β − 2)

ζ(β)
=

π1/2 21−β

(β − 2)Γ
(
β+1

2

)
ζ(β)

·

As an illustration of the above, let us determine
how the variance of the population of box number 1,
VarN1(t) =

〈
N1(t)2

〉
− 〈N1(t)〉2 =

〈
N1(t)2

〉
− ρ2

c , con-
verges at long times to its equilibrium value µc−ρ2

c. Only
the scaling regime matters for the long-time behavior of
this quantity, and of all the quantities at criticality to be
considered hereafter. Using (3.3), we obtain

VarN1(t)− (µc − ρ2
c) ≈ −∆t−(β−3)/2,

with, by (A.2),

∆ =
M1−F (β − 3)

ζ(β)
=

23−β

(β − 3)Γ
(
β+1

2

)
ζ(β)

·
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3.2 In the condensed phase (ρ > ρc)

We set

σ(t) ≈ 1 +At−1/2,

and consider the same two regimes as at criticality (see [12]
for more details).

Regime I: k fixed and t� 1 (short-distance regime)
Equations (3.1) and (3.2) still hold, but now with ω =

1/2, for any β > 2.

Regime II: k and t simultaneously large (scaling regime)
Looking for a similarity solution of equations (2.3), of

the form

fk(t) ≈ F (u)
t

, u = k t−1/2, (3.9)

we obtain for the scaling function F (u) the linear differ-
ential equation [12]

d2F

du2
+
(
u

2
−A+

β

u

)
dF
du

+
(

1− β

u2

)
F = 0. (3.10)

Following [12], we notice that the amplitude A is deter-
mined by the fact that equation (3.10) has an acceptable
solution F (u), vanishing as u → 0 and u → ∞. The nor-
malization of the solution F (u) is determined by the sum
rule (1.24), which yields∫ ∞

0

uF (u) du = ρ− ρc. (3.11)

The parameter v0 entering regime I is determined by the
sum rule (1.23), leading to

v0 = −Aρc −
∫ ∞

0

F (u) du.

At variance with equation (3.6), the differential equa-
tion (3.10) cannot be solved in closed form. It can be recast
in Schwarzian form, without first derivative, by setting

F (u) = uY (u)H(u),

with

Y (u) = u−β/2−1 eAu/2−u
2/8. (3.12)

We thus obtain for H(u) a differential equation of the form

HH = 0, (3.13)

with

H = − d2

du2
+W (u), (3.14)

and where the potential W (u) reads

W (u) =
u2

16
− Au

4
+
β − 3 +A2

4
− Aβ

2u
+
β(β + 2)

4u2
·

(3.15)

Equation (3.13) is a biconfluent Heun equation [18].
We will therefore refer to H as the Heun operator, denot-
ing its discrete eigenvalues by En and the corresponding
eigenfunctions bu Hn(u). Equation (3.13) implies that the
ground-state eigenvalue reads E0 = 0, while the associ-
ated eigenfunction H0(u) is simply related to the scaling
function F (u):

F (u) = c u Y (u)H0(u). (3.16)

By (3.11) we have

c =
ρ− ρc∫ ∞

0

u2 Y (u)H0(u) du

· (3.17)

The spectrum of the operator H, and related quan-
tities such as the scaling function F (u), can be further
investigated in the limiting regimes of high and low tem-
perature.

High temperature (β → 0)
The analysis of this limiting situation will be helpful

in Section 7, although it is of no direct physical relevance,
since the condensed phase only exists at low enough tem-
perature (β > 2).

For β = 0 and A = 0, the potential (3.15) becomes
W (u) = u2/16 − 3/4, so that H is the Hamiltonian of a
harmonic oscillator on the half-line u ≥ 0, up to a scale,
with Dirichlet boundary condition at u = 0. Its spectrum
is En = n (n = 0, 1, . . . ), and the (unnormalized) ground-
state eigenfunction reads

H0(u) = u e−u
2/8, (3.18)

hence

F (u) =
ρ− ρc

2 π1/2
u e−u

2/4. (3.19)

Perturbation theory can then be used to determine the
small-β behavior of the amplitude A. Expressing that the
lowest eigenvalue reads E0 = 0 with no correction, we
obtain ∫ ∞

0

(
−Au+ β +

2β
u2

)
H2

0 (u) du+ · · · = 0,

hence

A ≈ π1/2

2
β. (3.20)

Low temperature (β →∞)
In this other limiting situation, the operator H sim-

plifies as follows. If we rescale A and u according to
A ∼ u ∼ β1/2, all terms in the expression (3.15) for the po-
tential W (u) scale as β. In other words, β plays the role
of 1/~ in quantum mechanics, and β → ∞ is the semi-
classical regime. Expressing that the minimum of the po-
tential is at zero yields the first estimatesA ≈ u ≈ (2β)1/2.
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A more refined analysis consists in expanding the po-
tential W (u) around its minimum. Setting

A = (2β)1/2 − a, u = (2β)1/2 + β1/8v, (3.21)

the operator H becomes

H ≈ a2 − 2
4

+ β−1/4

(
− d2

dv2
+

a

25/2
v2

)
. (3.22)

The expression in the parentheses is again proportional
to the Hamiltonian of a harmonic oscillator. Expressing
that the lowest eigenvalue of the right-hand-side of (3.22)
is E0 = 0 determines a = 21/2 − 2−1/2β−1/4, hence

A ≈ (2β)1/2 − 21/2 + 2−1/2β−1/4.

The spectrum of H reads En ≈ β−1/4 n (n = 0, 1, . . . ),
and the (unnormalized) ground-state eigenfunction reads
H0(u) ≈ e−v

2/4, i.e.,

H0(u) ≈ exp
(
− (u− (2β)1/2)2

4β1/4

)
· (3.23)

Both this expression and the function Y (u) become sin-
gular in the β → ∞ limit, so that a direct analysis of
equation (3.10) is needed in order to derive the behav-
ior of the scaling function F (u) at low temperature. The
above analysis suggests to look for a solution depending
on the scaling variable y = (2β)−1/2u. The term involv-
ing the second-order derivative d2F/du2 is then negligible.
The simplified form of equation (3.10), namely

y(y − 1)2 dF
dy

+ (2y2 − 1)F = 0, y = (2β)−1/2u,

admits the normalized solution

F (u) =
ρ− ρc

2E1(1)β
y

(1− y)3
exp

(
− 1

1− y

)
(0 < y < 1),

where E1 is the first exponential integral (E1(1) =
0.219383934). The scaling function F (u) is therefore
nonzero in the β → ∞ limit only for y < 1, i.e., u <
(2β)1/2. The upper bound y = 1, i.e., u = (2β)1/2, co-
incides with the point where the eigenfunction H0(u), as
given by equation (3.23), peaks at low temperature.

4 Two-time observables: dynamical equations

In this section we will successively establish dynamical
equations for the two-time correlation function C(t, s), for
its derivative ∂C(t, s)/∂s, and for the response function
R(t, s). (See [10] for similar techniques.)

We consider the (connected) two-time correlation func-
tion C(t, s) between the population of box number 1 at
times s (waiting time) and t (observation time), with
0 ≤ s ≤ t:

C(t, s) = 〈N1(t)N1(s)〉 − 〈N1(t)〉 〈N1(s)〉
= 〈N1(t)N1(s)〉 − ρ2.

This definition can be recast as [10]

C(t, s) =
∞∑
k=1

k γk(t, s)− ρ2,

with

γk(t, s) =
∞∑
j=1

j fj(s)P{N1(t) = k | N1(s) = j}·

The evolution of the γk(t, s) with respect to t is given, for
t ≥ s, by a master equation similar to (2.3):

∂γk(t, s)
∂t

= γk+1(t, s) + σ(t)rk−1γk−1(t, s)

− (1 + σ(t)rk) γk(t, s) (k ≥ 1),
∂γ0(t, s)

∂t
= γ1(t, s)− σ(t)r0γ0(t, s). (4.1)

These equations preserve the sum rule
∑
k γk(t, s) = ρ.

At t = s, the initial conditions are γk(s, s) = k fk(s),
implying

C(s, s) =
∞∑
k=1

k2 fk(s)− ρ2,

which is the variance of the population of box number 1
at time s, as it should.

In the discussion of the fluctuation-dissipation the-
orem, we will need expressions of the time derivative
∂C(t, s)/∂s. We have

∂C(t, s)
∂s

=
∞∑
k=1

k ϕk(t, s),

with

ϕk(t, s) =
∂γk(t, s)
∂s

·

The evolution of the ϕk(t, s) with respect to t is again
given, for t ≥ s, by equations similar to (2.3):

∂ϕk(t, s)
∂t

= ϕk+1(t, s) + σ(t)rk−1ϕk−1(t, s)

− (1 + σ(t)rk)ϕk(t, s) (k ≥ 1),
∂ϕ0(t, s)

∂t
= ϕ1(t, s)− σ(t)r0ϕ0(t, s), (4.2)

with initial conditions at t = s

ϕk(s, s) = −fk+1(s) + σ(s)rk−1fk−1(s) (k ≥ 1),
ϕ0(s, s) = −f1(s),

so that(
∂C(t, s)
∂s

)
t=s

= σ(s)
∞∑
k=1

k rk fk(s) + 2(1− f0(s))− ρ.

The two-time response function R(t, s) is a measure
of the change in the mean population of box number 1
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at time t, induced by an infinitesimal modulation of the
conjugate variable, i.e., the local chemical potential acting
on the same box, at the earlier time s.

In the presence of an arbitrary local, time-dependent
chemical potential µ(t), the energy of box number 1 at
time t reads

E (N1(t)) = ln(N1(t) + 1)− µ(t)N1(t).

The occupation probabilities of this box now depend on
µ(t): we denote them by fµk (t). In the thermodynamic
limit, i.e., to leading order as M → ∞, the occupation
probabilities of all the other boxes (i = 2, . . . ,M) are still
given by the fk(t).

The response function reads

R(t, s) =
(
δ 〈N1(t)〉
δµ(s)

)
µ=0

=
∞∑
k=1

k hk(t, s),

with

hk(t, s) =
(
δfµk (t)
δµ(s)

)
µ=0

.

The modified occupation probabilities fµk (t) obey the
dynamical equations

dfµk (t)
dt

= fµk+1(t) + σ(t) eβµ(t)rk−1f
µ
k−1(t)

−
(

1 + σ(t) eβµ(t)rk
)
fµk (t) (k ≥ 1),

dfµ0 (t)
dt

= fµ1 (t)− σ(t) eβµ(t)r0f
µ
0 (t). (4.3)

The initial values fµk (0) = fk(0) and the parameter σ(t)
are unchanged. The dynamical equations (4.3) preserve
the sum rule

∑
k f

µ
k (t) = 1.

Equations (4.3) imply that the hk(t, s) obey, for t > s,

∂hk(t, s)
∂t

= hk+1(t, s) + σ(t)rk−1hk−1(t, s)

− (1 + σ(t)rk)hk(t, s) (k ≥ 1),
∂h0(t, s)

∂t
= h1(t, s)− σ(t)r0h0(t, s), (4.4)

with initial conditions at t = s

hk(s, s) = βσ(s) (rk−1fk−1(s)− rkfk(s)) (k ≥ 1),
h0(s, s) = −βσ(s)r0f0(s),

so that

R(s, s) = β (1− f0(s)) .

The behavior of the two-time observables will now
be successively investigated in the next three sections,
first at criticality (ρ = ρc), both at equilibrium and in
the nonequilibrium regime, and then in the condensed
phase (ρ > ρc).

5 Equilibrium critical dynamics

When the waiting time s becomes very large, keeping the
difference τ = t − s ≥ 0 fixed, two-time quantities reach
their equilibrium values, which only depend on τ , both
in the fluid phase (ρ < ρc) and along the critical line
(ρ = ρc). This section is devoted to the latter case.

The equilibrium correlation function Ceq(τ) reads

Ceq(τ) =
∞∑
k=1

k γk,eq(τ)− ρ2
c ,

where the equilibrium values γk,eq(τ) of the γk(t, s) obey

dγk,eq(τ)
dt

= γk+1,eq(τ) + rk−1γk−1,eq(τ)

− (1 + rk) γk,eq(τ) (k ≥ 1),
dγ0,eq(τ)

dt
= γ1,eq(τ) − r0γ0,eq(τ), (5.1)

with initial conditions γk,eq(0) = k fk,eq. This implies con-
sistently that Ceq(0) = µc−ρ2

c is the equilibrium variance
of the population of a generic box.

As the time difference τ gets large, we have γk,eq(τ)→
ρc fk,eq, so that Ceq(τ) → 0. The decay of Ceq(τ) for
large τ can be investigated along the lines of Section 3.1.
The two regimes I and II are again to be considered sep-
arately, although results concerning the former will not
be needed explicitly. In the scaling regime, we look for a
similarity solution to equations (5.1) of the form

γk,eq(τ) ≈ fk,eq τ
1/2 Geq(u), u = k τ−1/2, (5.2)

for which equations (5.1) yield the differential equation(
D +

1
2

)
Geq(u) = 0, (5.3)

with boundary conditions Geq(0) = 0 and Geq(u) ≈ u
as u → ∞. The differential operator D was defined in
equation (3.7).

Equation (5.3) can be solved by the method of Ap-
pendix A. With the definition (A.1), we have the func-
tional equation

MGeq(z + 2)
MGeq(z)

=
z − 1

2(z + 2)(β − 1− z)
,

whose suitably normalized solution reads

MGeq(z)=
π1/2 Γ

(
z−1

2

)
Γ
(
β+1−z

2

)
2z+1 Γ

(
z+2

2

)
Γ
(
β
2

) (1 < Re z < β+1).

The decay of the equilibrium correlation function at
large τ is again dominated by the scaling regime, and the
scaling form (5.2) yields

Ceq(τ) ≈ Aeq τ
−(β−3)/2, (5.4)
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with

Aeq =
MGeq(β − 2)

ζ(β)
=

π Γ
(
β−3

2

)
2β Γ

(
β
2

)2

ζ(β)
·

As expected, the fluctuation-dissipation theorem holds
at equilibrium. Indeed the equilibrium values ϕk,eq(τ) and
hk,eq(τ) of ϕk(t, s) and hk(t, s) obey the same equations,
identical to equations (5.1), with initial conditions:

hk,eq(0) = βϕk,eq(0) = β (fk,eq − fk+1,eq) (k ≥ 1),
h0,eq(0) = βϕ0,eq(0) = −βf1,eq,

hence the identities

hk,eq(τ) = βϕk,eq(τ) (5.5)

and

Req(τ) = −β dCeq(τ)
dτ

·

The last formula is the fluctuation-dissipation theorem in
its usual differential form.

6 Nonequilibrium critical dynamics

We now turn to the nonequilibrium critical behavior of
the two-time correlation function C(t, s), response func-
tion R(t, s), and fluctuation-dissipation ratio [13,14]

X(t, s) =
R(t, s)

β
∂C(t, s)
∂s

, (6.1)

in the scaling regime where both time variables s and t
are large and comparable. Hereafter x will denote the di-
mensionless time ratio

x =
t

s
≥ 1.

We first analyze the scaling behavior of the correla-
tion function C(t, s). Looking for a two-variable scaling
solution to equations (4.1) of the form

γk(t, s) ≈ fk,eq t
1/2 G(u, x), u = k t−1/2, x = t/s,

(6.2)

we obtain the partial differential equation(
x
∂

∂x
+D +

1
2

)
G(u, x) = 0 (6.3)

for the scaling function G(u, x), with initial condition

G(u, 1) = uF (u), (6.4)

and boundary condition G(∞, x) = 0 for all x ≥ 1. The
function F (u) is known from (3.8), and the operator D is
given by (3.7).

As shown in Appendix B, equation (6.3) can be solved
explicitly by the method of separation of variables. Equa-
tion (6.2) implies the scaling law

C(t, s) ≈ s−(β−3)/2 Φ(x), (6.5)

where

Φ(x) =
x−(β−3)/2

ζ(β)

∫ ∞
0

u1−β G(u, x) du.

Using (B.4), we obtain

Φ(x) = x−β/2
∞∑
n=0

An x
−n, (6.6)

with

An =
anMGn(β − 2)

ζ(β)
·

More explicitly, equations (B.3) and (B.5) imply that the
leading coefficient of the expansion (6.6) reads

A0 =
π1/2 23−βΓ

(
β+4

2

)
3(β + 1)Γ

(
β+1

2

)2

ζ(β)
, (6.7)

while the coefficient ratios are rational functions of β:

An
A0

=
3
2n

n−1∏
j=0

(2j + β)
n∑
k=0

(−)k

(2k + 3)k!(n− k)!

×
k−1∏
`=0

2`+ β + 4
2`+ β + 3

, (6.8)

i.e.,

A1

A0
=
β(2β + 3)
10(β + 3)

,

A2

A0
=
β(β + 2)(8β2 + 52β + 45)

280(β + 3)(β + 5)
, etc.

The expansion (6.6) is convergent over the whole phys-
ical domain (x > 1). For x → 1, i.e., τ = t − s � s, the
equilibrium result (5.4) is recovered as

Φ(x) ≈ Aeq(x− 1)−(β−3)/2. (6.9)

These properties can be checked by noticing that the ex-
pression (B.1) for the Laguerre polynomials simplifies to

L(β+1)/2
n (u2/4) ≈

(
2n1/2

u

)(β+1)/2

J(β+1)/2

(
un1/2

)
,

where J is the Bessel function, in the scaling regime where
the order n is large and u is small. The subsequent inte-
grals can be estimated for n large, yielding

An ≈
π

2β Γ
(
β
2

)2

ζ(β)
n(β−5)/2.
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This asymptotic expression ensures the convergence of the
series (6.6) for all x > 1, and establishes (6.9), including
the prefactor.

We now turn to the derivative ∂C(t, s)/∂s of the corre-
lation function. Looking for a two-variable scaling solution
to equations (4.2) in the scaling regime, of the form

ϕk(t, s) ≈ fk,eq t
−1/2G(1)(u, x), (6.10)

we get the partial differential equation(
x
∂

∂x
+D − 1

2

)
G(1)(u, x) = 0, (6.11)

with initial condition

G(1)(u, 1) = β
F (u)
u
− 2F ′(u). (6.12)

Equation (6.11) can again be solved by the method of
Appendix B. We thus obtain

∂C(t, s)
∂s

≈ s−(β−1)/2 Φ(1)(x), (6.13)

where

Φ(1)(x) =
x−(β−1)/2

ζ(β)

∫ ∞
0

u1−β G(1)(u, x) du. (6.14)

This expression will not be made more explicit, as equa-
tion (6.5) yields more directly

Φ(1)(x) =
3− β

2
Φ(x)− x dΦ

dx
, (6.15)

i.e.,

Φ(1)(x) = x−β/2
∞∑
n=0

A(1)
n x−n, (6.16)

with

A(1)
n =

(
n+

3
2

)
An. (6.17)

The scaling behavior of the response function R(t, s)
can be determined by the same approach. Looking for a
two-variable scaling solution to equations (4.4) in the scal-
ing regime, of the form

hk(t, s) ≈ fk,eq t
−1/2G(2)(u, x),

equations (4.4) yield the partial differential equation(
x
∂

∂x
+D − 1

2

)
G(2)(u, x) = 0, (6.18)

with initial condition

G(2)(u, 1) = β2F (u)
u
− βF ′(u). (6.19)

We thus obtain

R(t, s) ≈ s−(β−1)/2 Φ(2)(x), (6.20)

where

Φ(2)(x) =
x−(β−1)/2

ζ(β)

∫ ∞
0

u1−β G(2)(u, x) du, (6.21)

i.e., explicitly

Φ(2)(x) = x−β/2
∞∑
n=0

A(2)
n x−n. (6.22)

The leading coefficient of this expansion reads

A
(2)
0 =

β π1/2 21−βΓ
(
β+2

2

)
Γ
(
β+1

2

)2

ζ(β)
=

3β(β + 1)
2(β + 2)

A0,

while the coefficient ratios are again rational functions
of β:

A
(2)
n

A
(2)
0

=
1

(β + 1)2n

n−1∏
j=0

(2j + β)
n∑
k=0

(−)k(2k + β + 1)
(2k + 1)k!(n− k)!

×
k−1∏
`=0

2`+ β + 2
2`+ β + 3

,

i.e.,

A
(2)
1

A
(2)
0

=
β(2β + 1)
6(β + 1)

,

A
(2)
2

A
(2)
0

=
β(β + 2)(8β2 + 28β + 9)

120(β + 1)(β + 3)
, etc.

The scaling results (6.13) and (6.20) imply that
the fluctuation-dissipation ratio X(t, s), defined in equa-
tion (6.1), only depends on the time ratio x in the nonequi-
librium scaling regime. We have indeed

X(t, s) ≈ X (x) =
Φ(2)(x)
βΦ(1)(x)

· (6.23)

The scaling function X (x) turns out to be universal,
whereas Φ(x), Φ(1)(x), and Φ(2)(x), which respectively en-
ter equations (6.5, 6.13, 6.20), are only universal up to
a scale fixing. (A definition of universal quantities in the
present context will be recalled in the Discussion).

Equations (6.16) and (6.22) yield the expression

X (x) =

∞∑
n=0

A(2)
n x−n

β
∞∑
n=0

A(1)
n x−n

=
∞∑
n=0

ξn x
−n, (6.24)
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which is again convergent for x > 1. The limit fluctua-
tion-dissipation ratio, X∞ = X (∞) = ξ0, takes the simple
value

X∞ =
β + 1
β + 2

· (6.25)

Equation (6.24) also yields

ξ1 =
β2

3(β + 2)(β + 3)
,

ξ2 =
β2(−2β3 + 2β2 + 78β + 117)

45(β + 2)(β + 3)2(β + 5)
, etc.

The behavior of the fluctuation-dissipation ratio X (x)
close to equilibrium (i.e., for x → 1) is also of interest.
Equations (6.14) and (6.21) for x = 1, together with (6.12)
and (6.19), imply

lim
x→1

(
βΦ(1)(x)− Φ(2)(x)

)
= − β

ζ(β)
MF ′(β − 2)

=
21−β β

Γ
(
β+1

2

)
ζ(β)

·

This expression, together with equations (6.9) and (6.15),
yields

X (x) ≈ 1−
2Γ
(
β
2

)2

π Γ
(
β+1

2

)
Γ
(
β−1

2

) (x− 1)(β−1)/2,

confirming that the fluctuation-dissipation theorem is re-
stored for x → 1, and explicitly giving the leading vi-
olation of that theorem in the scaling regime, which is
proportional to (τ/s)(β−1)/2.

7 Nonequilibrium dynamics in the condensed
phase

We finally turn to the long-time behavior of the two-time
quantities C(t, s), R(t, s), and X(t, s) in the condensed
phase (ρ > ρc).

In regime II, we look for two-variable scaling solutions
to equations (4.1, 4.2), and (4.4), inspired by (3.9), of the
form

γk(t, s) ≈ k

t
G(u, x), ϕk(t, s) ≈ k

t2
G(1)(u, x),

hk(t, s) ≈ k

t2
G(2)(u, x), (7.1)

where u = k t−1/2 and x = t/s.
The three scaling functions obey partial differential

equations of the form (6.3, 6.11), or (6.18), where the dif-
ferential operator D is replaced by

D = − d2

du2
+
(
−u

2
+A− β + 2

u

)
d

du
− 3

2
+
A

u
· (7.2)

This differential operator is related to the Heun opera-
tor H (3.14) and to the function Y (u) defined in equa-
tion (3.12) by the conjugation

Y (u)H = D Y (u). (7.3)

Hence D and H share the same eigenvalues En (n =
0, 1, . . . ), which are not known explicitly, as already men-
tioned, except E0 = 0.

The two-time scaling functions defined in (7.1) are
then determined in analogy with the critical case. We thus
obtain

G(u, x) = Y (u)
∞∑
n=0

anx
−En−1/2Hn(u),

G(1,2)(u, x) = Y (u)
∞∑
n=0

a(1,2)
n x−En+1/2Hn(u), (7.4)

where the coefficients an, a(1,2)
n are determined by the ini-

tial conditions
G(u, 1) = F (u),

G(1)(u, 1) =
(
A

u
− β

u2

)
F (u)− 2

u
F ′(u),

G(2)(u, 1) = −β
u
F ′(u). (7.5)

Using the expansions (7.4), as well as the linear de-
pendence of F (u) in (ρ − ρc) (see Eqs. (3.16, 3.17)), we
obtain the following scaling forms for the correlation and
response functions:

C(t, s)≈s1/2 (ρ−ρc)Φ(x), Φ(x) =
∞∑
n=0

An x
−En,

∂C(t, s)
∂s

≈s−1/2 (ρ−ρc)Φ(1)(x), Φ(1)(x)=
∞∑
n=0

A(1)
n x−En,

R(t, s) ≈ s−1/2 (ρ− ρc)Φ(2)(x), Φ(2)(x) =
∞∑
n=0

A(2)
n x−En.

(7.6)

The scaling functions Φ(x), Φ(1,2)(x) only depend on β.
They take finite limit values, both at x = 0 and at x =∞.
The fluctuation-dissipation ratio

X(t, s) ≈ X (x) =
Φ(2)(x)
βΦ(1)(x)

again only depends on the time ratio x in the nonequi-
librium scaling regime. The whole scaling function X (x)
is universal, just as in the critical case. In particular,
the limit fluctuation-dissipation ratio X∞ = X (∞) =
A

(2)
0 /A

(1)
0 in the condensed phase is universal, and only

depends on β. Using equations (3.16) and (7.5), we can
derive the following expression for X∞ in terms of the
ground-state eigenfunction H0(u):

X∞ =

∫ ∞
0

(
u

2
−A+

β

u

)
H2

0 (u) du∫ ∞
0

uH2
0 (u) du

· (7.7)
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Fig. 1. Plot of the limit fluctuation-dissipation ratio X∞
against inverse temperature β. Upper curve: critical point
(β > 3, ρ = ρc) (see (6.25)). Lower curve: condensed phase
(β > 2, ρ > ρc) (see (7.7)). Thin dashed lines: continuation of
the results to high temperature.

The above expressions cannot be made more explicit
in general. More quantitative results can be derived at
high temperature and at low temperature, using results of
Section 3.2.

Let us consider the limit fluctuation-dissipation ra-
tio X∞, as given by equation (7.7). In the high-
temperature case, by (3.18) and (3.20), we obtain

X∞ =
1
2
− (π − 2)β + · · · (β → 0). (7.8)

In the low-temperature case, using (3.21) and (3.23), we
obtain

X∞ = β−1/2 − β−3/4

4
+ · · · (β →∞). (7.9)

It is instructive to compare the limit fluctuation-dissi-
pation ratios corresponding to the critical point and to the
condensed phase. The value of X∞ at criticality is given
by the analytical expression (6.25). The value of X∞ in
the condensed phase is obtained by a numerical evaluation
of (7.7): the ground-state eigenfunction H0(u) is obtained
by numerically solving the differential equation (3.10)
or (3.13), and then used to evaluate the integrals enter-
ing the result (7.7). The values thus obtained smoothly
interpolate between the limiting laws (7.8) and (7.9). In
Figure 1, thick full lines show the physical values of the
fluctuation-dissipation ratios, while thin dashed lines show
their continuation to high temperatures. Both fluctuation-
dissipation ratios start from 1/2 at infinite temperature,
and converge to the limit values X∞ = 0 and X∞ = 1
at zero temperature, respectively in the condensed phase
and at criticality (see Discussion).

8 Discussion

At the onset of this paper we gave a comparative presenta-
tion of two classes of dynamical urn models, the Ehrenfest
class and the Monkey class. All these models have simple
static properties, because their Hamiltonian is a sum of
contributions of independent boxes. They possess however
interesting nonequilibrium dynamical properties, even in
the mean-field geometry. The backgammon model [7–10]
is a prototypical example of the Ehrenfest class, while
model B of reference [9], and the zeta urn model [11,12]
which is the subject of the present work, are examples of
the other class.

Let us come back to the role of statistics in the defi-
nition and properties of such models. The essential differ-
ence between the Ehrenfest class and the Monkey class
indeed resides in matters related to a priori statistics.
Statistics enters the dynamical definition of models: the
proposed moves for the Ehrenfest class (respectively, the
Monkey class) are chosen according to ball-box statistics
(respectively, box-box statistics). Consistently, statistics
also enters their equilibrium definition: the partition func-
tions (1.2, 1.3) of the original Ehrenfest model, and of its
generalization to M urns, involve a factorial of the total
number of particles in their denominators. Inverse factori-
als 1/Ni!, taking into account equivalent labelings of par-
ticles within each box, are also involved in the evaluation
of the partition function (1.6).

In statistical mechanics with Maxwell-Boltzmann
statistics, the presence of inverse factorials has its origin
in the indiscernibility of identical classical objects. These
factorials are absent for the Monkey class, in which the
populations Ni are involved in flat sums, such as (1.7),
just as occupation numbers are in quantum-mechanical
statistical mechanics with Bose-Einstein statistics. There
is of course nothing quantum-mechanical in the urn mod-
els considered here. It can be said for short, follow-
ing reference [19], that the equilibrium statistics of the
Ehrenfest class is Maxwell-Boltzmann, while that of the
Monkey class is Bose-Einstein. Table 1 illustrates this dis-
cussion.

The main focus of this work concerns the nonequi-
librium properties of the zeta urn model, with emphasis
on the aging behavior of the two-time correlation and re-
sponse functions of the fluctuating population of a given
box, and of the corresponding fluctuation-dissipation ra-
tio. We considered successively the critical line (ρ = ρc)
and the condensed phase (ρ > ρc). We summarize these
two cases below.

The critical line in the temperature-density plane cor-
responds to a line of fixed points, parametrized by inverse
temperature β [11]. In other words, critical exponents,
both static and dynamical, and more generally universal
quantities, depend continuously on temperature. In the
present context, a universal quantity ought to be inde-
pendent:

– of the initial state (provided it is homogeneous and
disordered, i.e., the fk(0) decay rapidly),
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Table 1. Comparison of a priori statistics for the Ehrenfest class and the Monkey class of dynamical urn models: dynamical
and equilibrium aspects.

Class Ehrenfest Monkey
Dynamical rule ball-box box-box

Equilibrium weight of box i
pNi
Ni !

pNi

Statistical-mechanical analogue classical quantum-mechanical
(Maxwell-Boltzmann) (Bose-Einstein)

– of the specific form of the energy of each box (provided
it diverges logarithmically, as E(Ni) ≈ lnNi, for large
occupation numbers),

– and of details of the dynamics (such as Metropolis
versus heat-bath).

Our results (6.5) and (6.20) for the two-time corre-
lation and response function have the expected product
form (see [17] and references therein), involving: a common
non-universal prefactor, a negative power of the waiting
time, related to the anomalous dimension of the observ-
able, and a universal scaling function of the time ratio, or
temporal aspect ratio, x = t/s. Accordingly, the fluctua-
tion-dissipation ratio (6.23), X(t, s) ≈ X (x), only depends
on x in the nonequilibrium scaling regime. The limit value
X∞ = X (∞) has been recently emphasized [16,17] to be
a new universal quantity, characteristic of nonequilibrium
critical dynamics. For the zeta urn model, the result (6.25)
applies to the regular part of the critical line (β > 3),
so that 4/5 < X∞ < 1, as shown by the upper curve
in Figure 1. This range is unusual for a critical system.
Indeed, statistical-mechanical models such as ferromag-
nets are observed to have 0 < X∞ ≤ 1/2 at their critical
point. The upper bound X∞ = 1/2, corresponding to the
mean-field situation [17], is also observed in a range of
simpler models [13,14,16]. It is worth noticing that the
backgammon model also has a high fluctuation-dissipa-
tion ratio at its zero-temperature critical point, namely
X(t, s) ≈ 1− C/(ln s)2 for s� t, where the amplitude C
depends both on the observable and on the dynamical
rule [8,10].

The present analysis of condensation dynamics for
ρ > ρc extends and completes that begun in [12]. We
have investigated various quantities related to the occu-
pation probabilities in the scaling regime, describing the
growing condensate. An approximate analysis of the Heun
operator (3.14) has allowed us to obtain asymptotic ex-
pressions for various quantities at high and low tempera-
ture. The fluctuation-dissipation ratio admits a non-trivial
limit value X∞ throughout the condensed phase, shown
by the lower curve in Figure 1. Expression (7.9) shows
that X∞ ≈ β−1/2 slowly goes to zero at low tempera-
ture. This behavior is very different from that of conven-
tional models. It is indeed currently accepted [20] that
coarsening systems, such as ferromagnets quenched from
a high-temperature initial state, have identically X∞ = 0
throughout their low-temperature phase, i.e., for any tem-
perature below Tc. These unusual features of the zeta urn
model are less of a surprise if one remembers that the
condensation dynamics of the present model is basically

different from a domain-growth or coarsening dynamics.
In the latter case, phase separation takes place in a statis-
tically homogeneous way, at least for an infinite system.
To the contrary, in the present situation, condensation
takes place in a very inhomogeneous fashion. The form of
equation (3.9) indeed demonstrates that the condensate of
particles is shared by an ever decreasing fraction of boxes,
scaling as t−1/2, each of them having a population grow-
ing as t1/2 (until size effects eventually become important
for t ∼M2).

Appendix A: Solving equation (3.6) by Mellin
transformation

The Mellin transformation provides an efficient alternative
way of solving the differential equation (3.6).

We define the Mellin transform Mf(z) of a func-
tion f(u) by

Mf (z) =
∫ ∞

0

u−z−1 f(u) du, f(u) =
∫

dz
2πi

uzMf(z).

(A.1)

Equation (3.6), together with the boundary condition
F (0) = 1, is equivalent to the following functional
equation

M1−F (z + 2)
M1−F (z)

=
z

2(z + 2)(β − 1− z)

for the Mellin transform of 1− F (u). The solution of this
functional equation, with boundary condition F (∞) = 0,
reads

M1−F (z) =
Γ
(
β+1−z

2

)
z 2z Γ

(
β+1

2

) (0 < Re z < β + 1). (A.2)

Similarly, for Re z < 0, the Mellin transform of F (u),

MF (z) = −
Γ
(
β+1−z

2

)
z 2z Γ

(
β+1

2

) (Re z < 0), (A.3)

is the formal opposite of equation (A.2).
We also give for further reference the expression of the

Mellin transform of the derivative F ′(u):

MF ′(z) = − (z + 1)M1−F (z + 1)︸ ︷︷ ︸
−1<Re z<β

= (z + 1)MF (z + 1)︸ ︷︷ ︸
Re z<−1

= −
Γ
(
β−z

2

)
2z+1 Γ

(
β+1

2

) (Re z < β). (A.4)
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Appendix B: Solving equation (6.3)
by separation of variables and spectral
superposition

Partial differential equations such as (6.3), with given ini-
tial and boundary conditions, can be solved explicitly by
the method of separation of variables and spectral super-
position.

To do so, we need a basis of eigenfunctions of the differ-
ential operatorD of equation (3.7). Inspired by the explicit
form of the solution (3.8), we set

G(u) = uβ+1 e−u
2/4 L(v), v = u2/4.

The eigenvalue equation (D −E)G(u) = 0 becomes

v
d2L

dv2
+
(
β + 3

2
− v
)

dL
dv

+ (E − 1)L = 0,

which is the differential equation obeyed by the Laguerre
polynomials Lαn(v) [21], with α = (β+1)/2 and n = E−1.

The eigenvalues of the operator D therefore read En =
n+ 1, with n = 0, 1, . . . The associated eigenfunctions,

Gn(u) = uβ+1 e−u
2/4 L(β+1)/2

n (u2/4),

with [21]

L(β+1)/2
n (v) =

n∑
k=0

Γ
(
n+ β+3

2

)
Γ
(
k + β+3

2

) (−v)k

k!(n− k)!
, (B.1)

obey the orthogonality property∫ ∞
0

Gm(u)Gn(u)u−β eu
2/4 du = Nn δm,n,

Nn =
2β+2 Γ

(
n+ β+3

2

)
n!

· (B.2)

The Mellin transform MGn(z) of these eigenfunctions
can again be evaluated in closed form:

MGn(z)=
2β−z Γ

(
n+ z+2

2

)
Γ
(
β+1−z

2

)
n!Γ

(
z+2

2

) (Re z < β + 1),

(B.3)

where the normalization has been fixed by the condi-
tion [21] L(β+1)/2

n (0) = 1.
The method of spectral superposition consists in look-

ing for the solution G(u, x) of equation (6.3) as a linear
superposition of the form

G(u, x) =
∞∑
n=0

anx
−(n+3/2)Gn(u). (B.4)

The coefficients an are determined by the initial condi-
tion (6.4). Using the orthogonality property (B.2), we
obtain

an =
1
Nn

∫ ∞
0

u2 F (u)L(β+1)/2
n (u2/4) du.

Then, using (B.1) and (B.3), we are left with

an =
21−β

Γ
(
β+1

2

) n!
n∑
k=0

(−)k

(2k + 3)k!(n− k)!

Γ
(
k + β+4

2

)
Γ
(
k + β+3

2

) ·
(B.5)
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L603 (1995).
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